GLT-1 overexpression attenuates bladder nociception and local/cross-organ sensitization of bladder nociception.
نویسندگان
چکیده
Glutamatergic pathways mediate transmission of pain. Strategies to reduce glutamatergic neurotransmission may have beneficial effects to mitigate nociception. Recent work revealed that overexpression of the astrocytic glutamate transporter (GLT-1) by transgenic or pharmacologic approaches produced a diminished visceral nociceptive response to colonic distension. The purpose of this study was to determine the effect of GLT-1 overexpression on the visceromotor response to bladder distension. Increased glutamate uptake activity produced by 1-wk ceftriaxone (CTX) treatment attenuated 60-64% the visceromotor response to graded bladder distension compared with vehicle-treated mice. One-hour pretreatment with selective GLT-1 antagonist dihydrokainate reversed the blunted visceromotor response to bladder distension produced by 1-wk CTX, suggesting that GLT-1 overexpression mediated the analgesic effect of CTX. Moreover, sensitization of the visceromotor response to bladder distension produced by local bladder irritation (acrolein) was also attenuated by 1-wk CTX treatment. A model of cross-organ sensitization of bladder visceromotor response to distension was next studied to determine whether increased expression of GLT-1 can mitigate colon to bladder sensitization. Intracolonic trinitrobenzene sulfonic acid (TNBS) administered 1 h before eliciting the visceromotor response to graded bladder distension produced a 75-138% increase in visceromotor response compared with animals receiving intracolonic vehicle. In marked contrast, animals treated with 1-wk CTX + intracolonic TNBS showed no enhanced visceromotor response compared with the 1-wk vehicle + intracolonic vehicle group. The study suggests that GLT-1 overexpression attenuates the visceromotor response to bladder distension and both local irritant-induced and cross-organ-sensitized visceromotor response to bladder distension.
منابع مشابه
Characterization of the Visceral Antinociceptive Effect of Glial Glutamate Transporter GLT-1 Upregulation by Ceftriaxone
Recent studies demonstrate that glial glutamate transporter-1 (GLT-1) upregulation attenuates visceral nociception. The present work further characterized the effect of ceftriaxone- (CTX-) mediated GLT-1 upregulation on visceral hyperalgesia. Intrathecal pretreatment with dihydrokainate, a selective GLT-1 antagonist, produced a reversal of the antinociceptive response to bladder distension prod...
متن کاملGlutamate Transporter GLT-1 Upregulation Attenuates Visceral Nociception and Hyperalgesia via Spinal Mechanisms Not Related to Anti-Inflammatory or Probiotic Effects
Visceral pain is the most common reason for physician visits in US. Glutamate is the major excitatory neurotransmitter and mediates visceral nociceptive neuro-transmission and hypersensitivity. Removal of extracellular glutamate is predominantly mediated by glial glutamate transporter-1 (GLT-1). The pharmacological approach to up-regulate GLT-1 by 1 week administration of ceftriaxone (CTX) has ...
متن کاملMOLECULAR PAIN Metabotropic glutamate receptor 5 (mGluR5) regulates bladder nociception
Background: Interstitial cystitis/painful bladder syndrome (IC/PBS), is a severely debilitating chronic condition that is frequently unresponsive to conventional pain medications. The etiology is unknown, however evidence suggests that nervous system sensitization contributes to enhanced pain in IC/PBS. In particular, central nervous system plasticity of glutamatergic signaling involving NMDA a...
متن کاملMetabotropic glutamate receptor 5 (mGluR5) regulates bladder nociception
BACKGROUND Interstitial cystitis/painful bladder syndrome (IC/PBS), is a severely debilitating chronic condition that is frequently unresponsive to conventional pain medications. The etiology is unknown, however evidence suggests that nervous system sensitization contributes to enhanced pain in IC/PBS. In particular, central nervous system plasticity of glutamatergic signaling involving NMDA an...
متن کاملInflammation and enhanced nociceptive responses to bladder distension produced by intravesical zymosan in the rat
BACKGROUND Mycotic infections of the bladder produce pain and inflammatory changes. The present study examined the inflammatory and nociceptive effects of the yeast cell wall component, zymosan, when administered into the urinary bladder in order to characterize this form of bladder sensitization. METHODS Parametric analyses of the time-course (0-48 hr) and concentration (0-2% solutions) vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 300 6 شماره
صفحات -
تاریخ انتشار 2011